Conductive gels have greatly facilitated the development of flexible energy storage devices, including supercapacitors, batteries, and triboelectric nanogenerators. However, it is challenging for gel electrolytes to tackle the trade-off issues between mechanical properties and conductivity. Herein, a strategy of all inorganic salt-driven supramolecular networks is presented to construct gel electrolytes with high conductivity and reliable mechanical performance for flexible supercapacitors. The salt gel is successfully fabricated by combining a salt supramolecular network constructed by NH4Mo7O24·4H2O and FeCl3·6H2O and a polymer network of poly(vinyl alcohol). The inorganic salt supramolecular network serves as a rigid self-supporting framework in the hydrogel system for improving the mechanical properties and providing abundant active sites for accelerating ion transport. Furthermore, the salt gel-enabled supercapacitors are equipped and exhibit a high specific capacitance (199.4 mF cm–2) and excellent energy density (27.69 μWh cm–2). Moreover, the flexible supercapacitors not only present remarkable cyclic stability after 3000 charging/discharging cycles but also exhibit good electrochemical stability even under severe deformation conditions. The strategy of salt-gel-driven flexible supercapacitors would provide fresh thinking for the development of advanced flexible energy storage fields.