In the study at hand, a systemic investigation regarding the tribochemical effects of crankcase soot is presented. Sooted oils were generated via an engine dynamometer test. Both conventional as well as advanced oil condition monitoring methods indicated a mild degradation of additives. The wear volume was greatly increased with the sooted oils in model tribometer tests, despite the high residual zinc dialkyl dithiophosphate (ZDDP) antiwear (AW) levels. Once the soot was removed via ultracentrifugation, the wear volume returned to levels comparable to the fresh oil. Surface investigations revealed that ZDDP tribofilms could not form in the sooted oils, as only a thin sulfide layer was present on the metal surfaces. Meanwhile, typical tribofilms were observable with centrifuged oils. The results indicated that a tribocorrosive mechanism is most likely responsible for the elevated wear in the sooted oils, where only the iron sulfide base layer of ZDDP films is formed, which is then rapidly removed by the soot particles in an abrasive manner.