Textile Hinges Enable Extreme Properties of Kirigami Metamaterials

Mechanical metamaterials—structures with unusual properties that emerge from their internal architecture—that are designed to undergo large deformations typically exploit large internal rotations, and therefore, necessitate the incorporation of flexible hinges. Kirigami structures, made by introducing ordered cuts in a planar material, are one such example. In the mechanism limit, these structures consist of rigid bodies connected by ideal hinges that deform at zero energy cost. However, fabrication in this limit has remained elusive. Here, we demonstrate that the integration of textile hinges provides a scalable platform for creating large kirigami metamaterials with mechanism-like behaviors. Further, leveraging recently introduced kinematic optimization tools, we show that textile hinges enable extreme shape-morphing responses, paving the way for the next generation of mechanism-based metamaterials.

相关文章

  • Automated discovery of reprogrammable nonlinear dynamic metamaterials
    [Giovanni Bordiga, Eder Medina, Sina Jafarzadeh, Cyrill Bösch, Ryan P. Adams, Vincent Tournat, Katia Bertoldi]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集