Due to the limitation of the special wettability surface in the water collection field, the smooth surface injected by the lubricant has attracted wide attention. In this study, a simple two-step electrochemical reaction was used to successfully design a micro/nanospinous ball cluster structure on the surface of a frame. Subsequently, after low-surface-energy treatment and lubricant immersion, a lubricant-infused three-dimensional frame is prepared. The three-dimensional grid system of the frame and the micro/nanospinous ball cluster structure on the surface exert synergistic capillary force, which helps to maintain a stable lubricant-infused smooth surface. This interface system, which exhibits superior water collection efficiency, can achieve efficient droplet capture, coagulation, and removal. The prepared lubricant-infused frame also has remarkable corrosion resistance and anti-icing performance. After high-shear rate rotation and long-term storage, it still maintains a stable and smooth surface. The reported lubricant-infused three-dimensional frame has great potential in water condensation, droplet transport, and phase-to-heat transition.