Abstract : Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (V oc) and short-circuit current (I sc) can reach 150 V and 60 μA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy. Keywords: hydrophobic composite film; triboelectric nanogenerator; hydrophobic electrode; droplet energy Abstract : Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (V oc) and short-circuit current (I sc) can reach 150 V and 60 μA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy. Keywords: hydrophobic composite film; triboelectric nanogenerator; hydrophobic electrode; droplet energy Abstract : Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (V oc) and short-circuit current (I sc) can reach 150 V and 60 μA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy. Keywords: hydrophobic composite film; triboelectric nanogenerator; hydrophobic electrode; droplet energy Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (V oc) and short-circuit current (I sc) can reach 150 V and 60 μA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy. Keywords: hydrophobic composite film; triboelectric nanogenerator; hydrophobic electrode; droplet energy Keywords: hydrophobic composite film; triboelectric nanogenerator; hydrophobic electrode; droplet energy Keywords: