The requirements for the fuel economy of modern industry continue to drive the progress of low-viscosity lubricants. The present work reports the application of polyether amine derivatives as friction modifiers to improve the tribological properties of low viscosity poly-alpha-olefin. Three polyether amine derivatives with different molecular weights were synthesized, the tribological properties of which were systematically investigated under three different contact modes. These functionalized polymers exhibited significant friction reduction and wear resistance properties in the point-on-flat and line-on-flat friction tests, but just showed anti-wear performance in the severe point-to-point contact mode. The results exhibited that molecular weights of the polymers had a direct effect on their tribological properties. The increase of molecular weight in a certain range was beneficial to the improvement of tribological properties, but further undue increase will rather reduce the friction reduction and wear resistance performances. It can be indicated that the number of oxygen atoms increased with the molecular weight of the polymer, which will be conductive to the adsorption of the polymer on the metal surface. However, when the molecular weight of the polymer exceeds a certain value, the steric hindrance of the molecules adsorbing to the metal surface increases, which in turn has a negative impact on the tribological properties.