A microstructured surface has been applied in self-powered triboelectric pressure sensors to increase the charge-carrying sites and enhance the output performance. However, the microstructure increases the distance between the electrode and the triboelectric layer, and its influence on the output performance is unknown. Herein, we proposed a dome-conformal electrode strategy for a self-powered triboelectric nanogenerator (TENG) pressure sensor. With a simple reverse-dome adsorption process, an ultrathin triboelectric layer and Ag electrode can be made conformal to the dome PDMS structure. The TENG sensor is constructed with paper as a positive triboelectric layer. Compared with the device based on nonconformal structure, the conformal design strategy endows the device with a faster charge transfer and enhanced output voltage. By doping with BaTiO3, the outermost triboelectric layer can be easily modified to improve its ability of sustaining charge, and an ultrathin PDMS layer is coated on the triboelectric layer to expand the triboelectric polarity difference between two triboelectric layers so as to enhance the output voltage. The synergistic effects enable the optimized TENG sensor with a sensitivity of 0.75 V/kPa in the low-pressure region (0–26 kPa) and 0.19 V/kPa in the high-pressure range (26–120 kPa). Its application in human motion detection, grabbing water beakers, and noncontact distance testing has been demonstrated. This work provides a route such as a conformal structure design strategy to enhance the output performance of a microstructure-based TENG sensor.