Experimental Decoding and Tuning Electronic Friction of Si Nanotip Sliding on Graphene

Due to the coupled contributions of adhesion and carrier to friction typically found in previous research, decoupling the electron-based dissipation is a long-standing challenge in tribology. In this study, by designing and integrating a graphene/h-BN/graphene/h-BN stacking device into an atomic force microscopy, the carrier density dependent frictional behavior of a single-asperity sliding on graphene is unambiguously revealed by applying an external back-gate voltage, while maintaining the adhesion unaffected. Our experiments reveal that friction on the graphene increases monotonically with the increase of carrier density. By adjusting the back-gate voltage, the carrier density of the top graphene layer can be tuned from −3.9 × 1012 to 3.5 × 1012 cm–2, resulting in a ∼28% increase in friction. The mechanism is uncovered from the consistent dependence of the charge density redistribution and sliding barrier on the carrier density. These findings offer new perspectives on the fundamental understanding and regulation of friction at van der Waals interfaces.

相关文章

  • Graphene nanoribbons grown in hBN stacks for high-performance electronics
    [Bosai Lyu, Jiajun Chen, Sen Wang, Shuo Lou, Peiyue Shen, Jingxu Xie, Lu Qiu, Izaac Mitchell, Can Li, Cheng Hu, Xianliang Zhou, Kenji Watanabe, Takashi Taniguchi, Xiaoqun Wang, Jinfeng Jia, Qi Liang, Guorui Chen, Tingxin Li, Shiyong Wang, Wengen Ouyang, Oded Hod, Feng Ding, Michael Urbakh, Zhiwen Shi]
  • Nanoscale friction of tetrahedral amorphous diamond-like carbon film after thermal annealing
    [Wen Wang, Xiao Huang, Yiqing Huang, Yang Wang]
  • In Situ Twistronics: A New Platform Based on Superlubricity
    [Jianxin Liu, Xiaoqi Yang, Hui Fang, Weidong Yan, Wengen Ouyang, Ze Liu]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集