To expand the use of metal–organic frameworks (MOFs) based self-lubricating composite, flexible MOFs MIL-88D has been studied as a nanocontainer for loading lubricant. In this work, the mechanism of oleamine adsorption and desorption by MIL-88D was investigated through molecular simulations and experiments. Molecular simulations showed that the oleamines can be physically adsorbed into open MIL-88Ds with the Fe and O atoms of MIL-88D interacting with oleamine NH2-group. Higher temperature can cause Ole@MIL-88D to release more oleamines, while higher pressure on Ole@MIL-88D caused less oleamines released. Moreover the Ole@MIL-88D was incorporated into epoxy resin (EP) for friction tests. The optimum mass ratio of MIL-88D to EP is 15 wt%, and the EP/Ole@MIL-88D prefers light load and high frequency friction. This work suggests that flexible MOFs can be used as a nanocontainer for loading lubricant, and can be used as a new self-lubricating composite.