An Experiment Study on Surface Topography of GH4169 Assisted by Ultrasonic Elliptical Vibration Ultra-Precision Turning

Nickel-based superalloys (GH4169) are a typical difficult-to-machine material with poor thermal conductivity and severe work hardening. They are also prone to poor surface quality, severe tool wear, and poor machinability, which affect their performance. In this paper, an experimental study of GH4169 ultrasonic elliptical vibratory ultra-precision cutting was carried out. The experimental results show that ultrasonic elliptical vibratory cutting (UEVC) significantly reduces surface roughness and improves surface quality compared to conventional cutting (CC). The effects of cutting parameters such as cutting speed, feed rate, cutting depth, ultrasonic amplitude, and tool nose radius on the surface roughness of GH4169 workpieces were further investigated in UEVC. Based on the analysis of the experimental data, the optimal combination of parameters for GH4169 ultrasonic elliptical vibration ultra-precision cutting was determined: cutting speed of 3 m/min, feed rate of 16 μm/rev, cutting depth of 2 μm, ultrasonic amplitude of Ay = 3.0 μm, Az = 0.8 μm, and a tool nose radius of 0.8 mm. This parameter combination improves the machining quality of GH4169 and provides a valuable reference for the subsequent development of ultrasonic elliptical vibratory cutting for other difficult-to-machine materials.

相关文章

  • Study on the Wear and Corrosion Resistance of CoCrFeNiTi0.8-xcBN Laser Cladding Coatings
    [Zhongsheng Li, Kaiqiang Song, Yixin Bai, Dalong Cong, Min Zhang, Dong Peng, Xuan Wang, Xingxing Ding, Miaomiao Liao, Fu Zhou, Zehui Hua, Changpeng Wang]
  • PiezoClimber: Versatile and Self-Transitional Climbing Soft Robot with Bioinspired Highly Directional Footpads
    [Mingjie Zheng, Dongkai Wang, Dekuan Zhu, Shuhong Cao, Xiaohao Wang, Min Zhang]
  • AI-Driven Wearable Mask-Inspired Self-Healing Sensor Array for Detection and Identification of Volatile Organic Compounds
    [Mingrui Chen, Min Zhang, Ziyang Yang, Cheng Zhou, Daxiang Cui, Hossam Haick, Ning Tang]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集