In order to obtain the optimal cladding process parameters for repairing the inner wall of the cylinder, 316L stainless steel powder was laser clad onto 27SiMn steel, which is the base material of the inner wall of the cylinder. The CCD (Central Combination Design) experiment scheme was designed by the response surface method. A surrogate model between input variables (laser power, scanning speed, and powder-feeding speed) and response values (intactness, dilution rate, and the micro-hardness of the cladding layer) was established. The adaptive chaotic differential evolution algorithm (ACDE) was used to optimize the process parameters and the optimization results were verified by experiments. The results show that the optimum parameters are a laser power of 1350 w, a scanning speed of 11.7 mm/s, and a powder-feeding rate of 2.5 g/min. After cladding, the macroscopic quality of the cladding layer was increased by 11.1%, the micro-hardness was increased by 7.1%, and the dilution rate was reduced by 24.7%. During the friction wear experiments, it was found that the maximum wear depth of the optimal specimen was 149.72 μm, which was smaller and more wear-resistant than the specimen in the control group. The results provide theoretical data for the repair and strengthening of the inner wall of the hydraulic support cylinder.