Competition Between Growth and Removal in Zirconia Nanocrystal-Derived Tribofilms: The Role of Co-additives

Antiwear additives permit energy-efficient lubrication of gearboxes, bearings, and other tribological interfaces. We study zirconia (ZrO2) nanocrystal additives, which readily form protective tribofilms in tribological contacts. Our prior work demonstrated cooperative antiwear performance between ZrO2 and the S- and P-based co-additives in fully formulated hydrocarbon gear oils. Here, we extend that work by examining the growth kinetics of the ZrO2 tribofilms, including the influence of the co-additives. In the boundary lubrication regime for mixed rolling-sliding contacts, the initial phase of ZrO2 tribofilm growth is soon overtaken by removal processes, phenomena whose importance has gone unnoticed in prior work. Tribofilm removal affects the steady-state thickness and morphology of the tribofilm as well as its growth kinetics. The S- and P-based co-additives are incorporated into the ZrO2 tribofilm, and alter the competition between the growth and removal processes, increasing initial net growth rates per contact cycle and contributing to a more polished final interface. This work highlights the significance of removal processes in determining tribofilm antiwear performance, and suggests several routes for improving tribofilm growth kinetics using co-additives. Graphical abstract

相关文章

  • The Effects of Humidity on the Velocity-Dependence and Frictional Ageing of Nanoscale Silica Contacts
    [J. Brandon McClimon, Zhuohan Li, Khagendra Baral, David Goldsby, Izabela Szlufarska, Robert W. Carpick]
  • Ionic Liquids as Extreme Pressure Additives for Bearing Steel Applications
    [Mariana T. Donato, Pranjal Nautiyal, Jonas Deuermeier, Luís C. Branco, Benilde Saramago, Rogério Colaço, Robert W. Carpick]
  • Nanoscale Adhesion and Material Transfer at 2D MoS2–MoS2 Interfaces Elucidated by In Situ Transmission Electron Microscopy and Atomistic Simulations
    [Sathwik Reddy Toom, Takaaki Sato, Zachary Milne, Rodrigo A. Bernal, Yeau-Ren Jeng, Christopher Muratore, Nicholas R. Glavin, Robert W. Carpick, J. David Schall]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集