TiN/TiAlSiN nanocomposite multilayer coatings were deposited on a titanium alloy by multi-arc ion plating. The investigation of the wear behavior of TiN/TiAlSiN multilayer coatings against Si 3N 4 was conducted at temperatures of 25 °C, 300 °C, and 500 °C using a ball-on-disk tribometer. Additionally, to gain a deeper understanding of medium-temperature oxidation products, an oxidation test was performed at 500 °C for 10 h. The microstructure and chemical composition of the coatings were evaluated by X-ray diffraction and scanning electron microscopy. The primary peak in the XRD pattern of the multilayer coating changed from TiN (111) to Ti 3AlN (111) after the oxidation test. The hardness of the TiN/TiAlSiN multilayer coating was 1540 HV 0.1, representing a notable five times improvement compared to the substrate. The critical load in the scratch test was 52.3 N, indicating robust adhesion performance. The wear rate exhibited a sharp increase from 25 °C to 300 °C, compared to the rise from 300 °C to 500 °C. Furthermore, the friction coefficient of the coated sample was more stable than the substrate, with different scratch track morphologies between the samples before and after the oxidation test.