Multiscale Parametrization Of a Friction Model For Metal Cutting Using Contact Mechanics, Atomistic Simulations, And Experiments

In this study, we developed and parametrized a friction model for finite element (FE) cutting simulations of AISI4140 steel, combining experimental data and numerical simulations at various scales. Given the severe thermomechanical loads during cutting, parametrization of friction models based on analogous experiments has been proven difficult, such that the cutting process itself is often used for calibration. Instead, our model is based on the real area of contact between rough surfaces and the stress required to shear adhesive micro contacts. We utilized microtextured cutting tools and their negative imprint on chips to orient chip and tool surfaces, enabling the determination of a combined surface roughness. This effective roughness was then applied in contact mechanics calculations using a penetration hardness model informed by indentation hardness measurements. Consistent with Bowden and Tabor theory, we observed that the fractional contact area increased linearly with the applied normal load, and the effective roughness remained insensitive to cutting fluid application. Additionally, we calculated the required shear stress as a function of normal load using DFT-based molecular dynamics simulations for a tribofilm formed at the interface, with its composition inferred from ex-situ XPS depth profiling of the cutting tools. Our friction model demonstrated good agreement with experimental results in two-dimensional FE chip forming simulations of orthogonal cutting processes, evaluated by means of cutting force, passive force, and contact length prediction. This work presents a proof of concept for a physics-based approach to calibrate constitutive models in metal cutting, potentially advancing the use of multiscale and multiphysical simulations in machining. Graphical abstract

相关文章

  • Premature Damage in Bearing Steel in Relation with Residual Stresses and Hydrogen Trapping
    [Martin Dienwiebel, Iyas Khader, Andreas Kailer, Maximilian Baur, Dominik Kürten, Thomas Schieß]
  • Surface Depassivation via B–O Dative Bonds Affects the Friction Performance of B-Doped Carbon Coatings
    [Stefan Peeters, Takuya Kuwahara, Fabian Härtwig, Stefan Makowski, Volker Weihnacht, Andrés Fabián Lasagni, Martin Dienwiebel, Michael Moseler, Gianpietro Moras]
  • An All-Atom Force Field for Dry and Water-Lubricated Carbon Tribological Interfaces
    [Thomas Reichenbach, Severin Sylla, Leonhard Mayrhofer, Pedro Antonio Romero, Paul Schwarz, Michael Moseler, Gianpietro Moras]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集