On-Device Pressure-Tunable Moving Schottky Contacts

Contact engineering enhances electronic device performance and functions but often involves costly, inconvenient fabrication and material replacement processes. We develop an in situ, reversible, full-device-scale approach to reconfigurable 2D van der Waals contacts. Ideal p-type Schottky contacts free from surface dangling bonds and Fermi-level pinning are constructed at structurally superlubric graphite-MoS2 interfaces. Pressure control is introduced, beyond a threshold of which tunneling across the contact can be activated and amplified at higher loads. Record-high figures of merits such an ideality factor nearing 1 and an off-state current of 10–11 A were reported. The concept of on-device moving contacts is demonstrated through a wearless Schottky generator, operating with an optimized overall efficiency of 50% in converting weak, random external stimuli into electricity. The device combines generator and pressure-sensor functions, achieving a high current density of 31 A/m2 and withstanding over 120,000 cycles, making it ideal for neuromorphic computing and mechanosensing applications.

相关文章

  • Ultralow Resistivity of the Graphite/Au van der Waals Heterostructure in the Structural Superlubric State
    [Zhanghui Wu, Tielin Wu, Xiaojian Xiang, Weipeng Chen, Yelingyi Wang, Dinglin Yang, Dingchuan Tang, Ying Liu, Jie An, Jinhui Nie, Deli Peng, Quanshui Zheng]
  • Wear-free sliding electrical contacts with ultralow electrical resistivity
    [Ming Ma, Weipeng Chen, Tielin Wu, Zhanghui Wu, Yelingyi Wang, Yiran Wang, Quanshui Zheng, Chucheng Zhou]
  • Tuning Electronic Friction in Structural Superlubric Schottky Junctions
    [Xuanyu Huang, Zhaokuan Yu, Zipei Tan, Xiaojian Xiang, Yunxian Chen, Jinhui Nie, Zhiping Xu, Quanshui Zheng]
  • 成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    成果名称:低表面能涂层

    合作方式:技术开发

    联 系 人:周老师

    联系电话:13321314106

    润滑集