Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation

Superhydrophobic materials have been widely applied in oil–water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.

相关文章

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

润滑集