Artificially prepared superhydrophobic surfaces toward a self-cleaning “lotus effect” and anticontamination performance have become critically important in the past few years. However, most approaches to create the required topology with a hierarchical roughness comprise several manufacturing steps of varying practicality. Moreover, the desired low surface energy is in most cases achieved with fluorinated moieties that are currently criticized due to biological and environmental hazards. In this work, rapidly photocuring but weak thiol–ene resins were reinforced with cellulose nanofibrils (CNFs) to replicate lotus leaves via one-step UV nanoimprint lithography. The CNFs were surface-modified using countercation exchange of carboxyl groups and grafting of thiol and methacrylate functionalities. The formulation methodology resulted in free-flowing, shear-thinning composite resins without surfactants or dispersants. The rheological and photo-cross-linking behavior of the resins, the thermal stability, the mechanical performance, and the hydrophobicity of the cured composites were characterized. Notably, the surface modifications increased the as received fibril diameter (1.9 ± 0.6 nm) by 1.6–2.3 nm and raised the fibril–resin compatibility. The resins underwent rapid polymerization and the high thermal stability of thiol–enes was retained. The methacrylated nanofibrils (10 vol %) significantly strengthened the rubbery network, outperforming the neat thiol–ene polymer in terms of hardness (3.4×), reduced modulus (5.8×), and wear resistance (>100×). Moreover, the surface of lotus-texturized composites was superhydrophobic with a water contact angle of 155°, higher than that of the neat polymer (147°), and was self-cleaning. These CNF composite resins are compatible with fast-cure processes such as 3D printing and roll-to-roll processing, are exempt of fluorine or any other hydrophobization treatment, and are extremely wear-resistant.