Study of Electrode Design and Inclination Angle for Superior Droplet-Driven TENG Performance

The urgent need for efficient water energy harvesting has led to the development of triboelectric nanogenerators (TENGs). In this study, considering the droplet spreading dynamics and the capacitive effects in a droplet-driven TENG (DD-TENG) device, an inverse relationship between the width of the top electrode and the output voltage was derived for the first time through a circuit model and was experimentally verified. Additionally, key performance parameters were optimized, including the types and widths of top electrodes, dropping height, inclination angle of the device, and solution types. A nonmonotonic relationship between the inclination angle of the device and the output voltage was established. Under optimal conditions, the output voltage of the DD-TENG achieved a 1133% increase compared to that of the device without a top electrode. The power density reached 1265 mW·m–2, which is among the state-of-the-art DD-TENG devices. These findings provide valuable insights for the performance improvement of DD-TENGs.

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

成果名称:低表面能涂层

合作方式:技术开发

联 系 人:周老师

联系电话:13321314106

润滑集