A Babbitt alloy SnSb11Cu6 with 0–2.0 wt.% Co was synthesized using the induction melting process. This study examined the effect of cobalt (Co) on the microstructure, tensile properties, compressive properties, Brinell hardness, and wear properties of SnSb11Cu6 using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), a universal tensile testing machine, a Brinell hardness tester, and a wear testing machine. The results indicate that the optimal quantity of Co can enhance the microstructure of the Babbitt alloy and promote microstructure uniformity, with presence of Co 3Sn 2 in the matrix. With the increase in Co content, the tensile and compressive strength of the Babbitt alloy first increased and then decreased, and the Brinell hardness gradually increased with the increase in Co content. The presence of trace Co has a minimal effect on the dry friction coefficient of the Babbitt alloy. When the Co content exceeds 1.5 wt.%, the friction properties of the Babbitt alloy deteriorate significantly. The optimized Babbitt alloy SnSb11Cu6-1.5Co was subsequently fabricated into wires, followed by conducting cold metal transfer (CMT) surfacing experiments. The Co element can promote the growth of interfacial compounds. The microstructure at the interface of the Babbitt alloy/steel is dense, and there is element diffusion between it. The metallurgical bonding is good, and there are serrated compounds relying on the diffusion layer to extend to the direction of the additive layer with serrated compounds extending and growing from the diffusion layer to the additive layer. Overall, Babbitt alloys such as SnSb11Cu6 exhibit improved comprehensive properties when containing 1.5 wt.% Co. Abstract A Babbitt alloy SnSb11Cu6 with 0–2.0 wt.% Co was synthesized using the induction melting process. This study examined the effect of cobalt (Co) on the microstructure, tensile properties, compressive properties, Brinell hardness, and wear properties of SnSb11Cu6 using optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), a universal tensile testing machine, a Brinell hardness tester, and a wear testing machine. The results indicate that the optimal quantity of Co can enhance the microstructure of the Babbitt alloy and promote microstructure uniformity, with presence of Co 3Sn 2 in the matrix. With the increase in Co content, the tensile and compressive strength of the Babbitt alloy first increased and then decreased, and the Brinell hardness gradually increased with the increase in Co content. The presence of trace Co has a minimal effect on the dry friction coefficient of the Babbitt alloy. When the Co content exceeds 1.5 wt.%, the friction properties of the Babbitt alloy deteriorate significantly. The optimized Babbitt alloy SnSb11Cu6-1.5Co was subsequently fabricated into wires, followed by conducting cold metal transfer (CMT) surfacing experiments. The Co element can promote the growth of interfacial compounds. The microstructure at the interface of the Babbitt alloy/steel is dense, and there is element diffusion between it. The metallurgical bonding is good, and there are serrated compounds relying on the diffusion layer to extend to the direction of the additive layer with serrated compounds extending and growing from the diffusion layer to the additive layer. Overall, Babbitt alloys such as SnSb11Cu6 exhibit improved comprehensive properties when containing 1.5 wt.% Co. Keywords: Babbitt alloy; Co element; microstructure; interface morphology; strength; wear performance