Design/methodology/approach Oleylamine modified carbon nanoparticles (CNPs-OA) were prepared and the dispersion stability of CNPs-OA in PAO-3, PAO-20 and NPE-2 base oils was investigated by transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Universal Mechanical Tester (UMT) platform was used to carry out experiments on the effects of different additive concentrations on the lubricating properties of base oil. Findings The mean friction coefficient of PAO-3, PAO-20 and NPE-2 reduced by 32.8%, 10.1% and 11.4% when the adding concentration of CNPs-OA was 1.5, 2.0 and 0.5 Wt.%, respectively. Generally, The CNPs-OA exhibited the best friction-reducing and anti-wear performance in PAO-3. Originality/value The agglomeration phenomenon of carbon nanoparticles as lubricating additive was improved by surface modification, and the lubricating effect of carbon nanoparticles in three synthetic aviation lubricating base oils was compared.